查看当前cpu总利用率

# method 1
grep 'cpu ' /proc/stat | awk '{usage=($2+$4)*100/($2+$4+$5)} END {print usage "%"}'
# method 2
top -bn1 | grep "Cpu(s)"| sed "s/.*, *\([0-9.]*\)%* id.*/\1/"| awk '{print 100 - $1"%"}'
# method 3 更贴近于top统计
ps -A -o pcpu | tail -n+2 | paste -sd+ | bc
  cpu_eff=0
  time_stamp=`date +%y%m%d%H%M%S`
  while :
  do
      cpu_eff=`ps -A -o pcpu | tail -n+2 | paste -sd+ | bc`
      echo $cpu_eff | tee -a cpu_eff_${time_stamp}.log
      sleep 1
  done

画图

  • 读文件,使用matplotlib 画出折现图
  • 去掉“\n”s1 = [l.strip('\n') for l in input_1.readlines()]
  import numpy as np
  import matplotlib.pyplot as plt
  import sys
  # read data
  print(sys.argv)
  input_1 = open(sys.argv[1], 'r')
  # deal with data
  s1 = [l.strip('\n') for l in input_1.readlines()]
  s1 = [float(i) for i in s1]
  # print s1
  t1 = np.arange(0, len(s1))
  # print t1
  # draw pic
  fig, axs = plt.subplots()
  axs.plot(t1, s1, "b--",linewidth=1)
  # set axis
  axs.set_xlabel('time / second')
  plt.yticks(np.linspace(0,4000,num=10))
  axs.set_ylabel('cpu utilization / %')
  # set title
  axs.set_title(r'Original CPU Utilization')
  # set grid
  axs.grid(True)
  # save pic
  plt.savefig("hhh.jpg")
  # show pic
  plt.show()